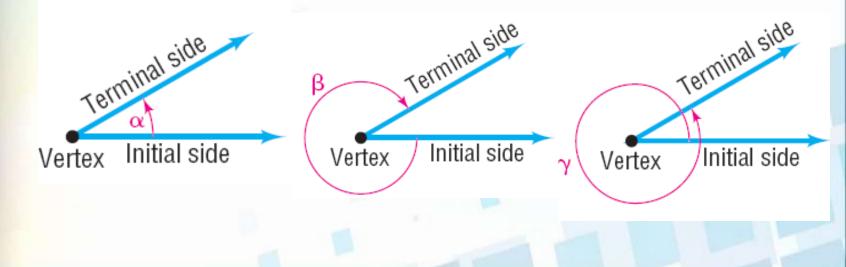


Trigonometric Functions

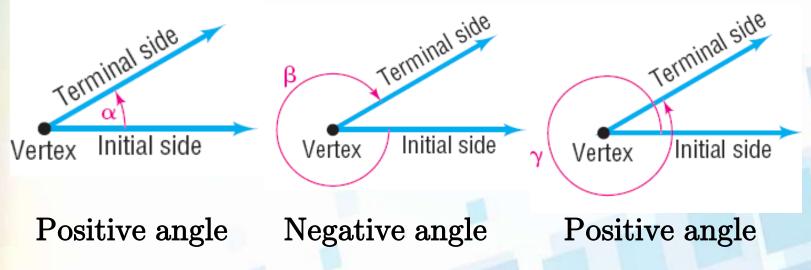
• Ray: A half-line starting at a vertex V

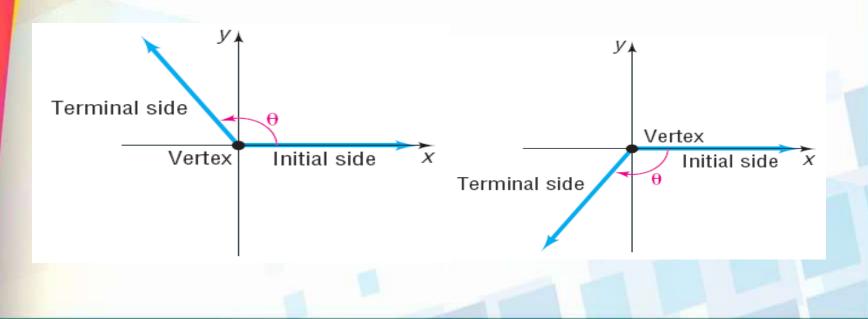
• Angle: Two rays with a common vertex

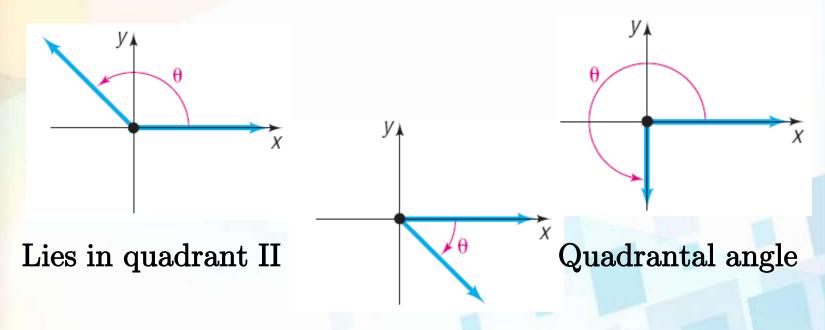
Vertex


Ray

Line

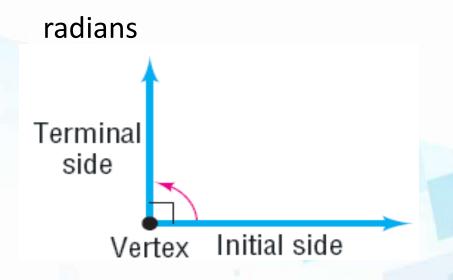

- *Initial side* and *terminal side*: The rays in an angle
 - Angle shows direction and amount of rotation
 - Lower-case Greek letters denote angles


- Positive angle: Counterclockwise rotation
- Negative angle: Clockwise rotation
- Coterminal angles: Share initial and terminal sides

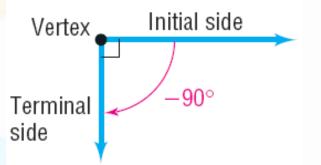

- Standard position:
 - Vertex at origin
 - Initial side is positive x-axis

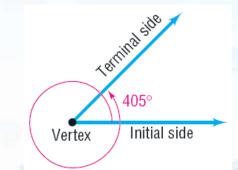
Quadrant angle: Angle in standard position that doesn't lie in any quadrant

Lies in quadrant IV


- Two usual ways of measuring
 - Degrees
 - 360° in one rotation
 - Radians
 - 2π radians in one rotation

- Right angle: A quarter revolution
 - A right angle contains


- Straight angle: A half revolution.
 - A straight angle contains:
 - 180°
 - π radians



Negative angles have negative measure

Multiple revolutions are allowed

Degrees, Minutes and Seconds

- One complete revolution = 360°
- One *minute*:
 - One-sixtieth of a degree
 - One minute is denoted 1'
 - $-1^{\circ} = 60'$
- One *second*:
 - One-sixtieth of a minute
 - One second is denoted 1"
 - -1' = 60''

Radians vs. Degrees

 Example. Convert each angle in degrees to radians and each angle in radians to degrees (a) Problem: 45° Answer: (b) **Problem:** {270° **Answer:** (c) Problem: 2 radians **Answer:**

Radians vs. Degrees

Measurements of common angles

Degrees	0°	30°	45°	60°	90°	120°	135°	150°	180°
Radians	0	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$	$\frac{2\pi}{3}$	$\frac{3\pi}{4}$	$\frac{5\pi}{6}$	π
Degrees		210°	225°	240°	270°	300°	315°	330°	360°
Radians		$\frac{7\pi}{6}$	$\frac{5\pi}{4}$	$\frac{4\pi}{3}$	$\frac{3\pi}{2}$	$\frac{5\pi}{3}$	$\frac{7\pi}{4}$	$\frac{11\pi}{6}$	2π

• $Quadrantal \ angles \ correspond \ to$ integer multiples of 90° or of $\frac{\pi}{2}$ radians

• Example. Find the values of the trigonometric functions of θ Problem: $\theta = -90^{\circ} \frac{\pi}{2}$ Answer:

• Example. Find the values of the trigonometric functions of θ Problem: $\theta = \pi = 180^{\circ}$ Answer:

• Example. Find the values of the trigonometric functions of θ Problem: $\theta = -270^{\circ} \frac{3\pi}{2}$ Answer:

Quadrantal Angles							
θ (Radians)	θ (Degrees)	$\sin \theta$	$\cos \theta$	$\tan \theta$	$\csc \theta$	$\sec \theta$	$\cot \theta$
0	0°	0	1	0	Not defined	1	Not defined
$\frac{\pi}{2}$	90°	1	0	Not defined	1	Not defined	0
π	180°	0	-1	0	Not defined	-1	Not defined
$\frac{3\pi}{2}$	270°	-1	0	Not defined	-1	Not defined	0

Example. Find the exact values of

 (a) Problem: sin ({90°)
 Answer:
 (b) Problem: cos (5π)
 Answer:

• Example. Find the values of the trigonometric functions of θ Problem: $\theta = -45^{\circ} \frac{\pi}{4}$ Answer:

• Example. Find the values of the trigonometric functions of θ Problem: $\theta = -60^{\circ} \frac{\pi}{3}$ Answer:

• Example. Find the values of the trigonometric functions of θ Problem: $\theta = -30^{\circ} \frac{\pi}{6}$ Answer:

θ (Radians)	heta (Degrees)	$\sin \theta$	$\cos \theta$	tan θ	$\csc \theta$	$\sec\theta$	$\cot heta$
$\frac{\pi}{6}$	30°	$\frac{1}{2}$	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{3}}{3}$	2	$\frac{2\sqrt{3}}{3}$	$\sqrt{3}$
$\frac{\pi}{4}$	45°	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{2}}{2}$	1	$\sqrt{2}$	$\sqrt{2}$	1
$\frac{\pi}{3}$	60°	$\frac{\sqrt{3}}{2}$	$\frac{1}{2}$	$\sqrt{3}$	$\frac{2\sqrt{3}}{3}$	2	$\frac{\sqrt{3}}{3}$

 Example. Find the values of the following expressions

(a) Problem: sin(315°)

Answer:

(b) Problem: cos({120°)

Answer: (c) Problem: $\tan \frac{5\pi}{6}$ Answer:

Approximating Values Using a Calculator

Example. Use a calculator to find the approximate values of the following. Express your answers rounded to two decimal places. (a) Problem: sin 57° Answer: (b) Problem: cot {153° Answer: (c) Problem: sec 2

Answer:

Periods of Trigonometric Functions

Periodic Properties:

 $sin(\theta + 2\pi) = sin \theta$ $cos(\theta + 2\pi) = cos \theta$ $tan(\theta + \pi) = tan \theta$ $csc(\theta + 2\pi) = csc \theta$ $sec(\theta + 2\pi) = sec \theta$ $cot(\theta + \pi) = cot \theta$

- Sine, cosine, cosecant and secant have period 2π
- Tangent and cotangent have period π

Periods of Trigonometric Functions

Example. Find the exact values of

(a) Problem: $sin(7\pi)$

Answer: (b) Problem: $\cos \frac{37\pi}{6}$ Answer: (c) Problem: $\tan \frac{19\pi}{4}$ Answer:

Signs of the Trigonometric Functions

Quadrant of θ	$\sin \theta$, csc θ	$\cos heta$, sec $ heta$	tan $ heta$, cot $ heta$
I	Positive	Positive	Positive
П	Positive	Negative	Negative
Ш	Negative	Negative	Positive
IV	Negative	Positive	Negative

1000

У.	•	+ Y	+		sine
$\frac{ (-, +) }{\sin \theta > 0, \csc \theta > 0}$	l (+, +) All positive	_	-	x	cosecant
others negative		- ^y	+		cosine
	X	-	+	x	secant
III (-, -)	IV (+, -)				
$\tan \theta > 0$, $\cot \theta > 0$ others negative	$\cos \theta > 0$, $\sec \theta > 0$ others negative		+		tangent
		+	-	x	cotangent

Quotient Identities

Example.

Problem: Given $\sin \theta = \frac{\sqrt{47}}{10}$ and $\cos \theta = \frac{\sqrt{53}}{10}$ find the exact values of the four remaining trigonometric functions of θ using identities. Answer:

Pythagorean Identities

 Example. Find the exact values of each expression. Do not use a calculator

(a) Problem: cos 20° sec 20°

Answer:

(b) Problem: $tan^2 25^\circ \{ sec^2 25^\circ \}$

Answer:

Pythagorean Identities

Example.

Problem: Given that $\tan \theta = -\frac{8}{9}$ and that θ is in Quadrant II, find $\cos \theta$.

Answer:

Even-Odd Properties

- <u>Theorem</u>. [Even-Odd Properties] $sin(\{\theta\}) = \{sin(\theta)\}$ $cos(\{\theta\}) = cos(\theta)$ $tan(\{\theta\}) = \{tan(\theta)\}$ $csc(\{\theta\}) = \{csc(\theta)\}$ $sec(\{\theta\}) = sec(\theta)$ $cot(\{\theta\}) = \{cot(\theta)\}$
- Cosine and secant are even functions
- The other functions are odd functions

Even-Odd Properties

Example. Find the exact values of

(a) Problem: sin({30°)

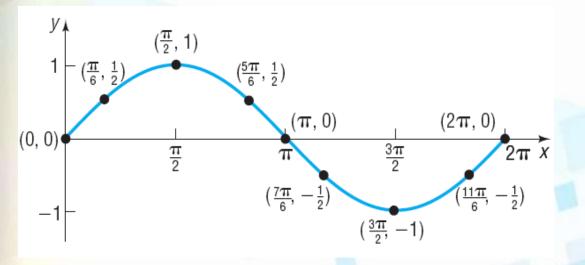
Answer: (b) Problem: $\cos\left(-\frac{\pi}{4}\right)$ Answer: (c) Problem: $\cot\left(-\frac{33\pi}{4}\right)$ Answer:

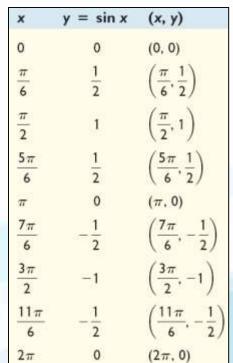
Fundamental Trigonometric Identities

• Quotient Identities $\tan \theta = \frac{\sin \theta}{\cos \theta}$

$\cot \theta =$	$\cos \theta$		
$\cot v =$	$\overline{\sin heta}$		

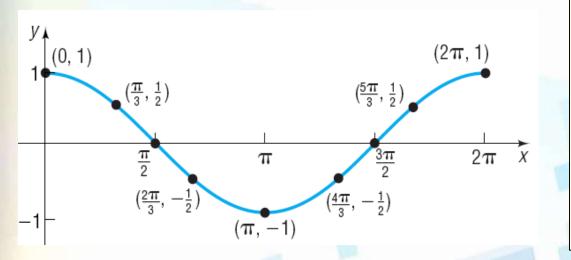
- Reciprocal Identities $\csc \theta = \frac{1}{\sin \theta} \quad \sec \theta = \frac{1}{\cos \theta} \quad \cot \theta = \frac{1}{\tan \theta}$
- Pythagorean Identities $\sin^2 \theta + \cos^2 \theta = 1 \quad \tan^2 \theta + 1 = \sec^2 \theta \quad 1 + \cot^2 \theta = \csc^2 \theta$
- Even-Odd Identities

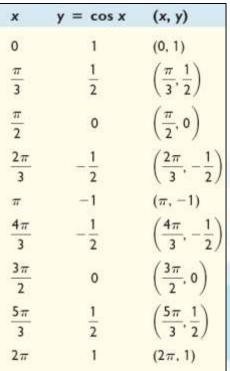

 $\sin(-\theta) = -\sin\theta \qquad \cos(-\theta) = \cos\theta \qquad \tan(-\theta) = -\tan\theta$ $\csc(-\theta) = -\csc\theta \qquad \sec(-\theta) = \sec\theta \qquad \cot(-\theta) = -\cot\theta$



Graphing the Sine Function

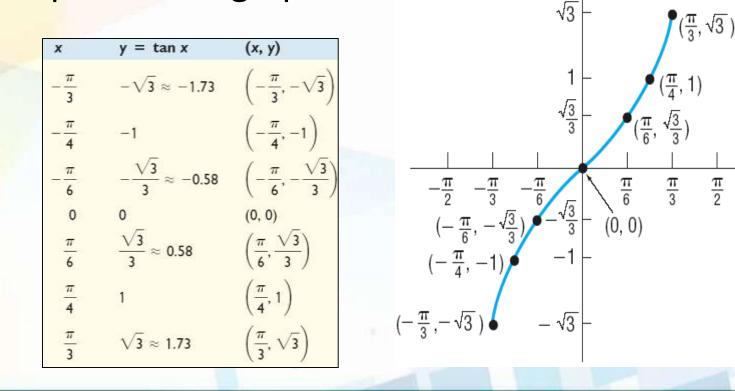
- **Periodicity**: Only need to graph on interval $[0, 2\pi]$ (One *cycle*) **x y** = sin **x** (x, y)
- Plot points and graph





Graphing the Cosine Function

- Periodicity: Again, only need to graph on interval [0, 2π] (One *cycle*) **x y** = cos **x** (x, y)
- Plot points and graph1



Graphing the Tangent Function

Periodicity: Only need to graph on interval [0, π]
 Plot points and graph

Χ

The End

Thanks